[1] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. doi: 10.1306/61EEDDBE-173E-11D7-8645000102C1865D [2] CHALMERS G R, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig unit[J]. AAPG Bulletin, 2012, 96(6): 1099-1119. doi: 10.1306/10171111052 [3] 张金川,李振,王东升,等. 中国页岩气成藏模式[J]. 天然气工业, 2022, 42(8): 78-95. doi: 10.3787/j.issn.1000-0976.2022.08.007 ZHANG Jinchuan, LI Zhen, WANG Dongsheng, et al. Shale gas accumulation patterns in China[J]. Natural Gas Industry, 2022, 42(8): 78-95. doi: 10.3787/j.issn.1000-0976.2022.08.007 [4] 陈掌星,冯东,吴克柳,等. 页岩气有机质和无机质吸附能力定量表征[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 65-75. doi: 10.3969/j.issn.1673-5005.2023.05.007 CHEN Zhangxing, FENG Dong, WU Keliu, et al. Quantificational determination of methane adsorption in organic matter and inorganic matter of shale rocks[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 65-75. doi: 10.3969/j.issn.1673-5005.2023.05.007 [5] ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids (Technical Report)[J]. Pure & Applied Chemistry, 1994, 66(8): 1739-1785. doi: 10.1351/pac199466081739 [6] JARVIE D M, HILL R J, RUBBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic: Shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068 [7] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. doi: 10.1016/S1876-3804(11)60001-3 ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. doi: 10.1016/S1876-3804(11)60001-3 [8] 刘鸿渊,蒲萧亦,张烈辉,等. 中国页岩气效益开发:理论逻辑、实践逻辑与展望[J]. 天然气工业, 2023, 43(4): 177-183. doi: 10.3787/j.issn.1000-0976.2023.04.017 LIU Hongyuan, PU Xiaoyi, ZHANG Liehui, et al. Beneficial development of shale gas in China: Theoretical logic, practical logic and prospect[J]. Natural Gas Industry, 2023, 43(4): 177-183. doi: 10.3787/j.issn.1000-0976.2023.04.017 [9] 袁士义,雷征东,李军诗,等. 陆相页岩油开发技术进展及规模效益开发对策思考[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 13-24. doi: 10.3969/j.issn.1673-5005.2023.05.002 YUAN Shiyi, LEI Zhengdong, LI Junshi, et al. Progress in technology for the development of continental shale oil and thoughts on the development of scale benefits and strategies[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 13-24. doi: 10.3969/j.issn.1673-5005.2023.05.002 [10] JIAO K, YAO S P, LIU C, et al. The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM-FIB and image processing: An example from the Lower Silurian Longmaxi Shale, Upper Yangtze Region, China[J]. International Journal of Coal Geology, 2014, 128: 1-11. doi: 10.1016/j.coal.2014.03.004 [11] WANG Yang, ZHU Yanming, CHEN Shangbin, et al. Characteristics of the nanoscale pore structure in northwestern Hunan shale gas reservoirs using field emission scanning electron microscopy, high-pressure mercury intrusion, and gas adsorption[J]. Energy & Fuels, 2014, 28: 945-955. doi: 10.1021/ef402159e [12] KLAVER J, DESBOIS G, LITTKE R, et al. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales[J]. Marine and Petroleum Geology, 2015, 59: 451-466. doi: 10.1016/j.marpetgeo.2014.09.020 [13] YANG Feng, XU Shang, HAO Fang, et al. Petrophysical characteristics of shales with different lithofacies in Jiaoshiba area, Sichuan Basin, China: Implications for shale gas accumulation mechanism[J]. Marine and Petroleum Geology, 2019, 109: 394-407. doi: 10.1016/j.marpetgeo.2019.06.028 [14] ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927. doi: 10.1016/j.marpetgeo.2008.06.004 [15] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mud stones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. doi: 10.2110/jsr.2009.092 [16] 武景淑,于炳松,张金川,等. 渝东南渝页1 井下志留统龙马溪组页岩孔隙特征及其主控因素[J]. 地学前缘, 2013, 20(3): 260-269. WU Jingsong, YU Bingshu, ZHANG Jinchuan, et al. Pore characteristics and controlling factors in the organic-rich shale of the Lower Silurian Longmaxi Formation revealed by samples from a well in southeastern Chongqing[J]. Earth Science Frontiers, 2013, 20(3): 260-269. [17] PENG N, HE S, HU Q H, et al. Organic nanopore structure and fractal characteristics of Wufeng and lower member of Longmaxi shales in southeastern Sichuan, China[J]. Marine and Petroleum Geology, 2019, 103: 456-472. doi: 10.1016/j.marpetgeo.2019.03.017 [18] LIU Z X, YAN D T, NIU X. Insights into pore structure and fractal characteristics of the Lower Cambrian Niutitang Formation shale on the Yangtze platform, South China[J]. Journal of Earth Science, 2020, 31(1): 169-180. doi: 10.1007/s12583-020-1259-0 [19] 徐旭辉,陆建林,王保华,等. 中国海相盆地油气资源动态评价与有利勘探方向[J]. 地学前缘, 2022, 29(6): 73-83. doi: 10.13745/j.esf.sf.2022.8.21 XU Xuhui, LU Jianlin, WANG Baohua, et al. Marine basins in China: Petroleum resource dynamic evolution and exploration directions[J]. Earth Science Frontiers, 2022, 29(6): 73-83. doi: 10.13745/j.esf.sf.2022.8.21 [20] 魏国齐,杨威,杜金虎,等. 四川盆地震旦纪——早寒武世克拉通内裂陷地质特征[J]. 天然气工业, 2015, 35(1): 24-35. doi: 10.3787/j.issn.1000-0976.2015.01.003 WEI Guoqi, YANG Wei, DU Jinhu, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 24-35. doi: 10.3787/j.issn.1000-0976.2015.01.003 [21] 刘宏,罗思聪,谭秀成,等. 四川盆地震旦系灯影组古岩溶地貌恢复及意义[J]. 石油勘探与开发, 2015, 42(3): 283-293. doi: 10.11698/PED.2015.03.04 LIU Hong, LUO Sicong, TAN Xiucheng, et al. Restoration of paleokarst geomorphology of Sinian Dengying Formation in Sichuan Basin and its significance, SW China[J]. Petroleum Exploration and Development, 2015, 42(3): 283-293. doi: 10.11698/PED.2015.03.04 [22] 杜金虎,汪泽成,邹才能,等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报, 2016, 37(1): 1-16. doi: 10.7623/syxb201601001 DU Jinhu, WANG Zecheng, ZOU Caineng, et al. Discovery of intra-cratonic rift in the Upper Yangtze and its coutrol effect on the formation of Anyue Giant Gas Field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16. doi: 10.7623/syxb201601001 [23] 钟勇,李亚林,张晓斌,等. 川中古隆起构造演化特征及其与早寒武世绵阳—长宁拉张槽的关系[J]. 成都理工大学学报(自然科学版), 2014, 41(6): 703-712. doi: 10.3969/j.issn.1671-9727.2014.06.05 ZHONG Yong, LI Yalin, ZHANG Xiaobin, et al. Evolution characteristics of central Sichuan palaeouplift and its relationship with Early Cambrian Mianyang-Changning intracratonic sag[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 703-712. doi: 10.3969/j.issn.1671-9727.2014.06.05 [24] 李忠权,刘记,李应,等. 四川盆地震旦系威远—安岳拉张侵蚀槽特征及形成演化[J]. 石油勘探与开发, 2015, 42(1): 26-33. doi: 10.11698/PED.2015.01.03 LI Zhongquan, LIU Ji, LI Ying, et al. Formation and evolution of Weiyuan-Anyue extension-erosion groove in Sinian system, Sichuan Basin[J]. Petroleum Exploration and Development, 2015, 42(1): 26-33. doi: 10.11698/PED.2015.01.03 [25] 汪泽成,姜华,王铜山,等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发, 2014, 41(3): 305-312. doi: 10.11698/PED.2014.03.05 WANG Zecheng, JIANG Hua, WANG Tongshan, et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2014, 41(3): 305-312. doi: 10.11698/PED.2014.03.05 [26] 李宗银,姜华,汪泽成,等. 构造运动对四川盆地震旦系油气成藏的控制作用[J]. 天然气工业, 2014, 34(3): 23-30. doi: 10.3787/j.issn.1000-0976.2014.03.004 LI Zongyin, JIANG Hua, WANG Zecheng, et al. Control of tectonic movement on hydrocarbon accumulation in the Sinian strata, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 23-30. doi: 10.3787/j.issn.1000-0976.2014.03.004 [27] 郭彤楼,熊亮,叶素娟,等. 输导层(体)非常规天然气勘探理论与实践——四川盆地新类型页岩气与致密砂岩气突破的启示[J]. 石油勘探与开发, 2023, 50(1): 24-37. doi: 10.11698/PED.20220759 GUO Tonglou, XIONG Liang, YE Sujuan, et al. Theory and practice of unconventional gas exploration in carrier beds: Insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(1): 24-37. doi: 10.11698/PED.20220759 [28] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9-10): 1051-1069. doi: 10.1515/ci-2016-0119 [29] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. International Union of Pure and Applied Chemistry, 1985, 57(4): 603-619. doi: 10.1351/pac198254112201 [30] 卢振东,刘成林,臧起彪,等. 高压压汞与核磁共振技术在致密储层孔隙结构分析中的应用:以鄂尔多斯盆地合水地区为例[J]. 地质科技通报, 2022, 41(3): 300-310. doi: 10.19509/j.cnki.dzkq.2021.0256 LU Zhendong, LIU Chenglin, ZANG Qibiao, et al. Application of high pressure mercury injection and nuclear magnetic resonance in analysis of the pore structure of dense sandstone: A case study of the Heshui Area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 300-310. doi: 10.19509/j.cnki.dzkq.2021.0256 [31] BUSTIN R M, BUSTIN A M M, CUI A, et al. Impact of shale properties on pore structure and storage characteristics[C]. SPE 119892, 2008. doi: 10.2118/119892-MS [32] 杨峰,宁正福,孔德涛,等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3): 450-455. doi: 10.11764/j.issn.1672-1926.2013.03.450 YANG Feng, NING Zhengfu, KONG Detao, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3): 450-455. doi: 10.11764/j.issn.1672-1926.2013.03.450 [33] 龚小平,唐洪明,赵峰,等. 四川盆地龙马溪组页岩储层孔隙结构的定量表征[J]. 岩性油气藏, 2016, 28(3): 48-57. doi: 10.3969/j.issn.1673-8926.2016.03.008 GONG Xiaoping, TANG Hongming, ZHAO Feng, et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(3): 48-57. doi: 10.3969/j.issn.1673-8926.2016.03.008 [34] CHALMERS G R L, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70: 223-239. doi: 10.1016/j.coal.2006.05.001 [35] CHEN J, XIAO X M. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129(4): 173-181. doi: 10.1016/j.fuel.2014.03.058 [36] 王飞宇,关晶,冯伟平,等. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发, 2013, 40(6): 764-768. doi: 10.11698/PED.2013.06.19 WANG Feiyu, GUAN Jing, FENG Weiping, et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6): 764-768. doi: 10.11698/PED.2013.06.19 [37] MILLIKEN K L, RUDNICKI M, AWWILLE R D, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvnia[J]. AAPG Bulletin, 2013, 97(2): 177-200. doi: 10.1306/07231212048 [38] WANG Qingtao, LU Hong, WANG Taoli, et al. Pore characterization of Lower Silurian shale gas reservoirs in the Middle Yangtze Region, central China[J]. Marine and Petroleum Geology, 2018, 89: 14-26. doi: 10.1016/j.marpetgeo.2016.12.015 [39] WANG Qingtao, WANG Taoli, LIU Wenping, et al. Relationships among composition, porosity and permeability of Longmaxi shale reservoir in the Weiyuan Block, Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 33-47. doi: 10.1016/j.marpetgeo.2018.12.026 [40] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061 |